Thermal activation of thin-shells in anti-de Sitter black hole spacetime

Abstract

We investigate thermal activation of thin-shells around anti-de Sitter black holes. Under the thin-shell approximation, we extensively study the parameter region that allows a bubble nucleation bounded by a thin-shell out of a thermal bath. We show that in general if one fixes the temperature outside the shell, one needs to consider the presence of a conical deficit inside the shell in the Euclidean manifold, due to the lack of solutions with a smooth manifold. We show that for a given set of theoretical parameters, i.e., vacuum and shell energy density, there is a finite range of black hole masses that allow this transition. Most interestingly, one of them describes the complete evaporation of the initial black hole.

Publication
Journal of High Energy Physics